BLBMC

Beth Hensperger’s baking books published by Chronicle Books, such as Bread (1988) were sound and useful book about home baking, which rode the currents of liberation from industrially processed bread, the recovery of whole grain baking, and inception of foodie artisanal baking. Her Bread Bible (1999) earned the 2000 James Beard Foundation award for a cookbook in the Baking & Dessert category. I have a copy – an inexpensive Kindle version. Her books before 1999 contain useful advice on basic technique. They refer mainly to active dry yeast and sometimes to yeast cakes (wet raw yeast) and skim over the introduction of the various kinds of instant yeast. She had a chapter on bread machines in the Bread Bible.

She must have been working on The Bread Lover’s Bread Machine Cookbook (2000) (BLBMC) for Harvard Common Press as the Bread Bible was being published and sent to market. The BLBMC preceded Not Your Mother’s Slow Cooker and other title in that series. Ms. Hensperger suggested that bread machines were a new way of doing an old thing. The BLBMC explains the technology , as it was at the time, and explains the use a bread machine to make the range of breads that might be purchased from a commercial bakery operation.

The BLBMC implies that its recipes should work in any bread machine. It treated all bread machines (it listed 18 manufacturers in the market at the time) as equivalent, with a  warning to “Take Stock of Your Machine”. This oversells the capabilities of bread machines and undersells the complexities of adapting the knowledge of bakers for a consumer appliance:

  • Baking involves doing something until a result it observed (the dough is mixed and supple; it has risen, or is ready to bench or bake);
  • Some steps cannot be described to a novice without pictures and videos. A baker with some experience might know how a “shaggy” dough (whole wheat dough that has been mixed to the point that the ingredient including water have been blended and the flour has absorbed the water and can be kneaded to develop gluten and left to rise may be described as shaggy) differs from a dry dough that needs more water;
  • Machines work in simple steps, without feedback.  The designer can program combinations of steps that should produce results with some combinations of ingredients if the machine is loaded properly;
  • Machines are not all the same; some machines work with some doughs, and not others;
  • The book did not anticipate technological and market changes including the developments in growing and preserving instant dry yeast and changes in machine mixing.

I had a problem with BLBMC recipes in a Panasonic SD-YD250, which I solved. There are differences in bread machines, particularly in their programmed cycles and times.

While Ms. Hensperger is clear about the importance of measurement of ingredients for bread machines, she uses home cooking conventions in her recipes including measuring out ingredients by volume.

BLBMC recipes have ingredient lists for “medium” 1.5 lb. and “large” 2 lb. loaves. A medium loaf usually uses 3 cups of flour – white, whole wheat and multigrain. The BLBMC recipes are consistent with other bread machine recipes and with conventional oven recipes. There are outliers; e.g. the recipe for a “medium” loaf of 100% whole wheat bread on p. 124 is 4 cups of flour with 1.5 cups fluid.  That is a 2 lb. loaf. “Tecate Ranch Whole Wheat” at p. 126 is a more workable 100% whole wheat loaf.

Like other bread and bread machine recipe books for the American market, the BLBMC says bread flour should be the white flour in bread recipes.   Ms. Hensperger describes bread flour as having 12.7 % protein. White bread flour in the USA has 11.5-13.5 % gluten-producing protein. All purpose white flour in the USA has 9.5-11.5 %.  Canadian all purpose flour is milled from hard red wheat, and has the same protein content as USA bread flour (Canadian Millers’ technical standards are not necessarily reflected in retail packaging). Canadian all purpose is fine for bread.

Ms. Hensperger favours the use of vital wheat gluten (gluten flour; added gluten) in formulas for many breads baked in the machine.  She suggested added gluten in almost every formula for bread baked in the machine up to 1 tsp of added gluten per cup, less gluten for bread flour. Added gluten changes the balance of the loaf and the performance of the dough (flow and rise); the effect may be different according to the machine. Adding gluten doesn’t improve white flour breads made with high gluten bread (Canadian AP flour. It doesn’t seem to help if the machine has well planned whole wheat cycle for whole grain breads.

Ms. Hensperger described the varieties of dry yeast as: 1. active dry yeast; 2. fast acting or instant dried yeast; 3. quick-rise (rapid-rise) yeast; 4. bread machine yeast.  There are few functional differences between 2, 3 and 4. Instant yeast, under any of its names, is the choice for bread machines.  Ms Hensperger prefers SAF instant yeast to the point that she says it is more potent. She suggests two alternatives for each recipe:

  1. SAF instant dried yeast (SAF Red),
  2. 25% – 33% more bread machine yeast than SAF instant dry yeast.  For instance, for Dakota Bread, BLBMC says 2 tsp SAF or 2.5 tsp bread machine*.

SAF makes a good product but its superiority may be debated. (*Ms. Hensperger has moved away from this  approach. In a version of the recipe for Dakota Bread in 2015 on her blog she said 2 tsp “bread machine yeast”).

The range of views about  the amount of yeast:

  1. For a 1.5 lb. loaf, Bread Lover’s Bread Machine Cookbook calls for 2 tsp instant dry yeast  or more and 1-1.5 tsp. salt for 3 cups of flour. This  is in the range of recipes in other books at the time, and of many recipes published on the web. It is .67 tsp instant dry yeast, or more, per cup of flour. This is 1.9 g. yeast per about 140 g. of wheat flour; the B% is 1.4%;
  2. Manufacturers of instant, rapid/quick rise and bread machine yeasts recommend .5 tsp yeast for each cup of flour for bread machines: Red Star Quick-Rise; Bakipan Fast Action and Bread Machine; SAF Gourmet Perfect Rise and  Bread Machine. Fleishmann’s  recipes on its web pages imply the same amounts of its instant Quick-Rise (Rapid-Rise) or its Bread Machine product, or more. This is 1.4 g. yeast per about 140 g. of wheat flour; the B% is 1%;
  3. Panasonic suggests .33 tsp of dry yeast per cup of flour -which works in Panasonic machines.

Ms. Hensperger covers conversion from volume to weight for flour but not for yeast and salt.

Several online converters report: 1 cup, (48 tsp (US)) instant dry yeast = 136 grams; 1 tsp = 2.8 g. My average for 15 samples of 1 tsp of SAF Red was 2.8 g. Instant yeast has a sandy texture and doesn’t pack down like flour. I was able to scoop a few dozen samples, weigh them on a scale and verify the weight of a teaspoon of instant yeast.

Salt can be measured by volume with measuring spoons, but should be used carefully with level measurements. It is better to go by weight. The conversion rate is 1 teaspoon of table salt to 5.7 grams – the teaspoon that the recipe writer will have assumed.  Table salt is not all the same – some is pretty finely ground and more dense.

It is a useful book. It has worthwhile sections on bread machine operation and (pp. 38-39) on common failures. It has sections, sidebars, and detail sections on bread making and bread machine topics. The table of contents and the index don’t locate all of them.

  • p. 12 flour, and
    • pp. 46-47 white flour from wheat,
    • pp. 62-63 whole wheat and non-wheat grain flour,
    • p. 125 proteins in flour,
    • pp. 106-107 whole wheat flour,
    • pp. 133-135 rye flour.
    • p. 140 diy milling of whole grain flour,
    • pp. 150-152 non-wheat specialty flour,
    • p. 193 organic flour
  • pp. 13-14 yeast;
  • p. 13, p. 59 vital wheat gluten;
  • p. 15, p. 290 Salt
    • is not used as a seasoning or flavour agent;
    • should not be exposed to the water and the yeast before the machine mixes the ingredients;
    • can be reduced if yeast is reduced by the same proportion.
  • p. 15 ingredient measurement;
  • p. 18 converting volume to weight for flour and sugar;
  • pp. 69-72 6 “sampler” recipes for one pound loaves;
  • p. 76 eggs;
  • p. 168 dough enhancers;
  • pp. 170, 172 gluten free ingredients;
  • pp. 182-183 baking with whole grains, and preparing whole grain;
  • pp. 197-198 using the machine to mix and knead dough for baking in an oven, and using artisanal baking methods:
    • starters and pre-ferments,
    • shaping loaves
    • baking stones, tiles and ceramic containers (and cloches);
  • p. 233 olive oil;
  • p. 354 the shapes of bread machine pans.

The sections on using a bread machine to mix and knead dough for baking in an oven, and artisanal baking methods are informative, but a bread machine is a labour saving tool, and not a replacement for the tools and method of artisinal baking.

Labels

The idea of a low sodium diet is to consume less salt. There are many sources of information. Sources may  promote a fad or a personal theory. Buyer beware. These resources are scientific and fact based:

Salt can be avoided or reduced. A product label will identify sodium in almost anything that has been packaged.

Continue reading

Measuring, Conversion

Bread recipes for the home baker usually list ingredients by volume: cups, tablespoons etc.  A recipe for a 1 lb. loaf of bread requires 2 cups of white bread flour or whole wheat flour. 

Most recipes round flour and water to the nearest quarter cup. The Bread Lover’s Bread Machine Cookbook (Harvard Common Press, 2000; by Beth Hensperger) goes to the nearest 1/8 cup.   Too much water is cited by BLBMC and others as a source of some kinds of failure – weak and sunken loaves.  Too much is in relation to the amount of flour that is being hydrated, and the mixing or kneading action of the machine. An extra 30 grams (1/8 cup = 2 tbsp.) of water into 3 cups of flour means a wet sloppy dough.  The goal is tenacious and somewhat elastic (i.e. that pulls back to its original size and shape) dough that is also extensible – it relaxes.  Too much water can make the gluten too slack.

Small measurement errors can affect the loaf.  If the recipe rounded the wrong way, being precise may lead to an unsatifactory outcome.Errors in conversion factors and mistakes in arithmetic – even in putting numbers into a calculator can lead to the extra tablespoon of water (15 ml = 15 g.) that changes the dough and the loaf.

Usually, recipes refer to a standard measuring cup. A US cup is .87 of an Imperial (U.K., many other English speaking countries) cup.  An Imperial cup is 1.2 US cups.  A metric cup is a quarter liter (250 millilitres) which is .88 Imperial cups or 1.06 US cups. The amount of flour in a cup depends on how the cup is scooped or filled.

Measuring by weight is more exact. It is the standard for commercial baking, and useful for bread machine making. Converting volume to weight is fuzzy. The Bread Lover’s Bread Machine Cookbook suggests 1 cup of bread flour or whole wheat flour converts at 5 oz.  Reinhart (The Bread Baker’s Apprentice, and other books) says 4.5 oz.; he measures loosely scooped bread flour scooped in a scoop and poured into the measuring cup. Flour scooped with a measuring cup is lightly packed, and weighs in at 4 and 7/8 oz. (4.875) or 4.9 oz. There is a range of weights for a cup of bread flour – milled high protein wheat flour:

  • 4.875 (4 and 7/8) oz. = 138 g.
  • 4.9 oz. = 139 g
  • 5 oz. = 141 g.

I weigh white bread flour (Canadian All Purpose) and whole wheat flour at 139 g. per cup in a recipe. Scales in ounces go down to 1/8 oz, but not necessarily to decimal fractions.  Metric kitchen scales go to the nearest gram. That is close enough for flour.

The volume to mass conversion for other flours varies. Millers have conversions for their products – e.g.  King Arthur. There are generic conversion calculators and tables but these have to used with care.

Books for home bakers may refer to baker percentage (B %), a method of managing the production of bread. For instance Peter Reinhardt devotes pages 40-45 of The Bread Baker’s Apprentice to this topic. It is a tool taught to professional bakers, and addressed in culinary texts such as Daniel T. DiMuzio’s Bread Baking; An Artisan’s Perspective. For the baker-manager, it is a calculation to scale inputs up or down to  create 2, 10, 100 or 1,000 consistent loaves of bread. The assumptions are consistency of ingredients, equipment, energy, working space, and time.  For managing production, every ingredient is put into the formula.  The formula can be used to build dashboard indicator of the use of a bakery.  It is as precise as it needs to be, for how it is used. B % is explained:

Flour has plant proteins and starch. Water and protein make dough sticky and stretchy. Starch feeds yeast – some is fermented. Starch is the carbohydrate in bread – the thing that makes it food. Flour is the ground product of grains, including flour and meal. All flour is counted to determine Total flour weight, even when flours differ in density and protein content. It is conventional to express the relative amounts of flour as a percentage of the total flour weight (e.g. 50% bread flour and 50% whole wheat; or 90% bread flour and 10% rye flour). It is conventional to count all dry ingredients – which works better for a bakery manager than for a home baker.

The weight of every other ingredient is expressed as a percentage of the Total flour weight. The fluid percentage is called the hydration rate, a scale of how wet, sticky and messy the dough is. Conventionally, only the main fluid counts for the hydration rate. Water or milk.

Milk is nearly all water. Butter has water. Maple syrup, honey and other syrups have some water. Eggs have water. ingredients that contain water are not necessarily counted directly – it involves conversions and extra math. Wet ingredients that contain water may be noted to see if a dough has a higher real hydration rate than a simple calculation implies.

A cup of water, USA standard is 236.6 grams (in the metric system one milliliter of water is one gram). (An Imperial cup of water converts to 284 grams. A metric cup of water is 250 grams.)

Water content of baking ingredients can be calculated by referring the USDA Food Composition Databases. For a Canadian product, the Canadian Nutrient File may have the value. Using the databases takes some practice. Not all of the water reported in the data is released from the source ingredient and incorporated into dough. It may be necessary to use a teaspoon or two more water to get the hydration right (for 2 cups of flour in bread machine).

A cup of fluid cow’s milk is 244-245 grams according to USDA averages. Whole milk should be 3.25% butter fat. 2% milk, 1% milk, and non-fat (or skim) milk are reduced fat milk products. In grams, the water/total weights, per cup:

  • Skim 223/245
  • 1% 219/244
  • 2% 218/244
  • Whole 215/244
  • Buttermilk (whole) 215/245

1 + 1/4 cups of skim milk has 1 + 3/16 cups (1 cup + 3 tbsp) of water.

The home baker’s trick is reduce water in a recipe by 1/4 cup for 1 cup of honey, when honey is used to replace sugar. The average for honey in the US and Canada is 17 g water per 100 g of honey.

A typical pure maple syrup for sale in the US or Canada is 32 grams of water per 100 grams of syrup.

A large egg, in the Canadian egg grading system is about 57 g.  A large egg contributes 40 g. to hydration – nearly 3/16 of a cup of water.

Yeast means yeast organisms that have been commercially grown, preserved, packaged, and distributed as a leavening agent. Commercial yeasts changed. The smaller grained instant dry yeast and quick-rise/rapid-rise yeasts entered the market.

Volume to weight conversion is simple and direct if a recipe refers to instant dry yeast or an equivalent small grain yeast. I convert from measuring spoon units to mass units with the factor 1 tsp = 2.8 g.

Recipes published up to about 1999-2000 tend to refer to active dry yeast and could refer to active dry yeast in packets. A recipe might say a packet or a tablespoon of active dry yeast. Active dry yeast was sold in foil packets containing .25 oz. of yeast, which was apparently a tablespoon until late in the 20th century. Active dry yeast became somewhat denser and finer grained, although it remained distinct from the instant dry yeasts. A modern packet of active dry yeast is about 2.25 teaspoons, but is still .25 oz. = 7 grams.

7 grams of modern active dry yeast is equivalent to 5.6 grams of instant dry yeast.

Salt is a chemical control on yeast. Recipes refer to standard table salt.

B% descriptions of a recipe may have 2% salt and 1% yeast. For 2-3 cups of flour,  this means fractions of an ounce of salt and yeast. Recipes univerally refer to ordinary table salt. For conversion from a recipe teaspoon to weight, 1 tsp of table salt = 5.7 g.

Some 21st century table salts are fine-grained and more dense. This does not affect measurement by weight, but a baker measuring by volume will notice that 1 tsp of fine grained salt is different than 1 tsp of ordinary table salt.

Yeast

There was a shift from wet yeast to active dry yeast to dry instant yeast throught the 20th century. Recipes written before 2000 may refer to active dry yeast or even to wet yeast “cakes”. Industrial formulas were based on weight and baker’s percentage. Recipes for home bakers used volume measurements.

The differences between active dry yeast and  others dry yeasts: the particles of active dry yeast are larger, and coated in dead yeast cells killed in the drying process.  Active dry yeast has to activated with hot (not boiling) water. Instant dry yeast grains are smaller. It activates on contact with the water in a recipe, and almost never needs to be activated or prehydrated to propogate.  See All About Dried Yeast, What is Bread Machine Yeast, the King Arthur flour Ingredient Guide, the King Arthur web article All About Yeast, and the King Arthur blog post “Which Yeast to Use”. See also  Commercial Yeast in Fresh Loaf Baker’s Handbook, and What’s the Difference between Active Dry Yeast and Instant Yeast. For the history of baking yeast, and the ways it has been presented, Lesaffre’s Explore Yeast pages are informative.  A leading baking industry paper on instant dry yeast: Lallemande’s Update, Volume 2 # 9.

Instant yeasts, once they activate, ferment and propogate, pick up speed and hit a peak. Some compressed and active dry yeasts have a second peak – home wine makers and home beer makers encounter this with their yeasts which have a vigorous first fermentation and a secondary fermentation. Bakers may time their  bulk fermentation and final proof to take advantage of each. I found a graph on SAF Instant dry yeast gas production (with the Cyrillic text and the red line for SAF in the post by Mariana January 2, 2018 in the forum Difference in Yeast Brands). I have not found comparison graphs for other instant dry yeasts.

Some yeasts are called quick-rise/rapid-rise yeast. These names refer to the a way of preparing the product – chemical coating of the individual grains. The varieties of product are tried and coated differently. Commercially, instant dry yeast is diffent than some rapid/quick-rise products. See: Yeast: Dry vs. Rapid-Rise and the thread “Fast Active Fleishmann’s vs. SAF Instant” (about pizza dough). The equivalences are debated in forums like Instant Yeast vs. Fleishmann’s Rapid-Rise.

Some yeasts are labelled as bread machine yeast. The proliferation of types and names arose because manufacturers use different techniques and marketing terms.The manufacturers do not explain how rapid/quick-rise products are made, or how bread machine yeast is different from the rapid/quick-rise products. Bakipan, for instance, says that its “Fast Rising Instant Yeast [is] … cake yeast in a semi-dormant state. The drying process in its manufacture reduces moisture content, giving it a longer shelf life than cake yeast while retaining optimum activity. … Bakipan® Fast Rising Instant Yeast is a fast-acting yeast that can shorten the rise times for traditional baking …” Specifications and methods are not noted on the packaging or published widely – perhaps only for some customers.  The manufacturers don’t, according to what home bakers say on the Web, respond to inquiries from home bakers.

Books on artisinal bread baking do not distinguish quick-rise/rapid-rise yeast from instant dry yeast: e.g.: Peter Reinhart, Crust and Crumb (Ten Speed Press, 1998); Peter Reinhart, The Bread Baker’s Apprentice (Ten Speed Press, 2001); Peter Reinhart, Artisan Bread Every Day (Ten Speed Press, 2009); Robert DiMuzio, Bread Baking; An Artisan’s Perspective (Wiley, 2010). Reinhart said that instant dried yeast can be substituted for compressed fresh and active dry yeast for home bread baking – it is good enough for artisanal recipe uses. He came to accept that instant dry yeast should be rehydrated for artisanal breads in Artisan Bread Every Day  at p. 13 (although fermentation should be slowed down with refrigeration). The accepted ratio to substitute instant for active dry  in oven baking is 1 tsp of instant dry for 1.25 tsp active dry.

Instant dry yeasts , rapid/quick-rise yeasts, and bread machine yeasts vary in some way but are equivalent for bread machines.

Some recipe and baking books suggest letting the yeast and ingredients warm to room temperature. Some  sources suggest that keeping yeast cold, including dried yeast, slows it down. Reinhart noted that instant yeast is potent but slow to awake in The Bread Baker’s Apprentice at p. 32. refrigeration preserves the product.

Bread

Bread is high in sodium, as an effect of the baking process.  The master formula for bread is to grind dried grain into a paste or flour, add water and yeast, let the stuff ferment and throw it on a hot surface until it dries out and stops fermenting.

Salt controls yeast which affects fermentation. Fermentation affects flavour but it also affects rise, which affects the size of the loaf and the production line; it also has a chemical effect on the taste buds (Lallamand Baking Update, Volume 2, No. 6). A few bread styles, such as Tuscan bread, are made without salt.  Salt is part of the process for most bread sold by grocery stores and bakeries large and small.

Archeologists have found evidence that the Nafufians, hunter gatherers in Jordan were making bread with wild cereal (grain) 12,500 BCE.   Baking uses the products of many technologies. Flour is the product of grinding and milling cereal.  Flour mixed with water makes dough which is baked.  Dough can be fermented or leavened. Yeast consumes starches in the flour – it ferments, creating gas, which is trapped in gluten in the dough, which makes the bread rise. Bakerpedia explains:

When yeasted dough ferments rises and increases in volume, and flavor is developed.  Yeast converts starch  in flour into sugar, carbon dioxide and ethyl alcohol. CO2  gas  is trapped by gluten proteins in the flour which causes dough to rise. Fermentation results in a light and airy crumb.

The yeast propogates.  Propogation and fermentation accelerate until the living yeast cells run out of starch, or are killed off by high temperature. If gas production goes on too long, the air cells in the dough rupture. An overproofed loaf is a lump of wet flour.  In oven baking, the dough rises in 2 or 3 stages: bulk fermentation, and intermediate and final proof. Dough is knocked or “punched” down to release gas at the end of the bulk fermentation and again when the loaf is shaped. The dough rises again in the baking pan and springs when yeast warm up the pan goes in the hot oven – before the heat kills the yeast.

Gluten “is a composite of storage proteins … found in wheat, barley, rye, oats, related species and hybrids …  Gluten gives elasticity to dough, helping it rise and keep its shape and often gives the final product a chewy texture.”  When flour and water are mixed (kneading is a continuation of mixing) the water interacts with proteins in the flour to form strands of gluten that make the dough sticky and stretchy.  Gluten relaxes in time which lets the dough flow and rise. As we read at Bakerpedia:

Consisting of mainly gliadin and glutenin, wheat gluten is unique among cereal proteins based on its ability to form a cohesive and viscoelastic mass. This rheological property makes it a dynamic material that is able to grow and keep the gasses within the dough during extended fermentation periods. The viscoelastic nature also provides the oven spring (increase in height due to the expansion of gasses) that we see in the oven.

Wheat flour has the necessary proteins to form gluten.  Added gluten is wheat flour processed to contain this proteins, used as a dough enhancer. (Wheat gluten also is the main ingredient of the vegan food Seitan).    Commercial bakers know, referring again to Bakerpedia:

Excessive use of wheat gluten would result in drier doughs that have a hard time with pan flow, and a higher than normal oven spring.

Mark Kurlansky’s excellent book Salt: a World History (2002) tells of the use of salt to bake bread in Egypt (3,000 BCE),  The production of salt may have started about 8,000 years ago.

Salt is a standard and necessary ingredient in most formulas and recipes. The right ratio of flour to salt and yeast means a loaf that will rise on time, and not overproof or balloon.

Professional bakers and some home bakers express ingredient lists or recipes as formulas expressed in baker’s percentage (B%). Bakers use consistent processes to manufacture a consistent product. A formula with salt needs more yeast to ferment and rise properly.  Reducing salt changes the process. Professional bakers may use 2 pounds of salt and .77 pound of instant dry yeast per 100 pounds of flour.  The B% for salt is 2%; instant yeast is .77%. This works out to .3 ounces = 8.5 grams = 8,500 mg. salt per 3 cups (15 ounces) of flour.  A normal loaf of bread has 3,400 milligrams of sodium per loaf – several hundred milligams per slice or serving.

Salt can be reduced , with a reduction in the amount of yeast. A few books and some internet pages unwisely suggest eliminating salt and but list the same amount of yeast that would be used if there was salt in the recipe!  Every reduction in salt in a bread formula has to be balanced with a reduction of yeast.  The accepted method is reducing yeast by the same percentage as salt. Please Don’t Pass the Salt has recipes for yeasted breads and a note on the general adjustment for yeasted bread recipes.

Artisan bread baking writers suggest that adjusting the salt in formulas leads to unsatifactory results  – e.g. Peter Reinhart, Artisan Bread Every Day (Ten Speed Press, 2009) at p. 15 suggests not reducing by more than 10%.  This approach warns the aspiring baker that salt is important to baking what consumers and food critics regard as good bread. This approach does not help much for someone avoiding sodium.  It is easy to get to 50%. It is possible to go further if final proofing can be extended to let the dough ferment and rise longer. Conversely, working in the kitchen, a baker may detect and arrest an active fermentation by knocking down the dough or getting the loaf in the oven.

Home bakers work with small amounts of salt and yeast. Measurement by weight is desireable, in theory.  Few home bakers have scales precise enough. And what is the conversion?

For table salt: 1 tsp = 5.7 grams (round to 6 grams) or .20 oz.  There is some confusing information in some modern culinary publications.

  • America’s Test Kitchen/Cooks Illustrated The Science of Good Cooking (2012) lists several brands of kosher salt and sea salt and compares them to table salt, suggesting that Morton’s brand is the standard for table salt at 1 tsp = 7.15 g.
  • Peter Reinhart, The Bread Baker’s Apprentice (Ten Speed Press, 2001) says on p. 28 that 1 tsp of table salt = .25 oz which converts to 7 grams. 

Some fine crystal table salt on the market in the US weighs 7 grams per teaspoon.  A recipe or bread formula ought to read as referring to conventional table salt. The size of the salt crystals affects solubility, which can affect the distribution of salt in the dough, and effect of salt on yeast.   Density, as such, doesn’t matter when adding salt by weight.  Home bakers can normally read a recipe in terms of level teaspoons of table salt, and should adjust when using coarser (eg. kosher salt, some sea salt), or finely ground salt measured by volume. 

Most sources say for instant dry yeast: 1 tsp  = 2.8 grams = .10 oz. .   Peter Reinhart, The Bread Baker’s Apprentice (Ten Speed Press, 2001) says on p. 28 that 1 tsp instant dry yeast = .11 oz which converts to 3.1 grams.

Commercial bakers use chemical leaveners for some bread.  Home bakers use baking powder and baking soda for corn bread, soda bread, cakes and other baking.  Baking powder is baking soda mixed with cream of tartar. Kraft Foods Magic Baking Powder does not provide Food Facts on the labels of small jars in Canada.  The published information is that 1 tsp has 300 mg. of sodium.  Substitutions for baking powder involve 1/4 tsp of baking soda plus some acid (e.g. vinegar, cream of tartar) for each tsp baking powder.
Baking soda is sodium bicarbonate.  It has 1,259 mg. of sodium per teaspoon, which explains the food facts for baking powder.

The science of substitution for baking soda and baking powder is to use potassium bicarbonate, or to use natural bubbles, if possible e.g. whipped egg whites. Potassium bicarbonate is the key ingredient of Featheweight, but is not a grocery product.  It is available as a supplement but has a list of side effects and do not use if taking medication warnings.

There is a no sodium baking powder on the market, called Featherweight. Please Don’t Pass the Salt has recipes for quick breads, and suggestions on low sodium “baking mixes”

Cookbooks

Dietary and culinary theories abounded – and still persist, that salt is adds flavour and should be used in cooking nutritious and tasty food. Salt has been added to food as necessary preservative e.g. ham, sausage, olives, cheese, soy and other sauces. It has become a normal practice to put some salt into any dish, or the water to prepare boiled ingredients.

Some culinary books say that consumers can avoid the wrong processed ingredients and avoid processed foods. That’s true, but that advice may be accompanied by advising home cooks to use salt, as suggested in a recipe, in preparing meals.  Also to brine certain foods to make them cook better. The writers, presenters, and publishers of the  Cook’s Illustrated/America’s Test Kitchen family are an example. This sends contradictory messages about processed food, prepared food, home cooking and eating to satisfy taste and psychological needs:

  • It supports home cooking and food preparation with less reliance on processed ingredients
  • It appears to encourage safe and wise use of salt
  • It is a rationale for trying a salted item for one’s own pleasure or as  comfort food, which is also a rationale for departing from a program.

Recipes from some sources include nutrition facts.  General recipe books generally do not provide this kind of information.   General recipes may involve processed ingredients; these are worthless in a low-sodium diet unless a no sodium alternative can be substituted.

Some culinary books recommend measuring salt by weight, because it is more precise and because of the variations in the densities of salt (oarse, kosher, table, sea salt etc).  Table salt is not uniform.  Recipes assume table salt, at 6 grams per teaspoon. Cook’s Illustrated/America’s Test Kitchen published the weight of a specific brand of iodized table salt (Morton Iodized Salt) in The Science of Good Cooking (2012) at p. 113 as over 7 grams. The extra gram of salt is 400 mg. of sodium.

Continue reading

Salt

Salt (sodium chloride) is a chemical agent used to cook or process food. Saltiness is regarded as one of 5 main tastes. (Scientists have not, as of 2018, identified a distinctive taste receptor for salt.)  Sodium is an essential nutrient, but consuming more sodium than the minimum has no health benefits. Excessive sodium is a health risk. The upper limits for sodium intake, in milligrams, per day:

These numbers are not stated in ranges for body type, or weight.  The limits are stated as a single high number and a second lower number for persons diagnosed with hypertension, or defined by age or other statistical risks. The 2,300 milligram figure is the sodium in about a teaspoon (the unit of volume) of salt. Exceeding the upper limit is risky and harmful.

Food products high in sodium:

  • Bread;
  • Sandwich spreads, condiments and salad dressings;
  • Processed meat, cold cuts, charcuterie;
  • Cheese;
  • crackers,
  • pickles, olives,.
  • Processed (flaked/puffed or shaped and toasted) breakfast cereal;
  • Tomato juice, vegetable juice and tomato-clam (some very high);
  • Processed spaghetti sauces and tomato sauces (very high);
  • Pizza – bread topped with tomato sauce, cheese, and whatever else (most very high);
  • Canned soups (monstrously high);
  • Soy sauce, hoisin sauce and fish sauce (monstrously high);
Continue reading

Hypertension

I had a stroke in January. I was unconscious for a few days, hospitalized for a couple of weeks and off work for a few months.

I was hypertensive.

I thought I had been cooking healthy i.e. not using more salt than a recipe required etc.

My blood pressure dropped with medication during my recovery. My blood pressure got into a good range when I eliminated salt by switching to no sodium added broths and vegetables in cooking,baking bread in a bread machine on a lower salt formula for the recipes I was using and avoiding fast food, processed meats, cheese and processed (factory cooked) products.

Appliances

Since my move to Victoria, I have tried out and adopted some appliances and discarded others.
I started with a new set of Paderno stainless steel pots – purchased cheaply in 2006 when Canadian Tire dropped the Royale sets. I have added another sauce pan and the steamer and double boiler (not Royale but who cares). Capital Iron carries Paderno in Victoria. I expect the saucepans and the dutch oven to last for a while. The coated frying pans are standing up well although I think the coating in those pans will break down long before the pans wear out.
I bought a larger enameled cast iron dutch oven at Capital Iron which has become one of my favorite pots.
I started with some decent knives – some with the Superstore house brand and some of the midrange Wusthof Tridents.. I bought a couple new knives last year – I went to Mac for a 6 and a half inch Santoku and a 10 inch chef’s knife. The steel is superb – it stays sharp enough for ripe tomatoes with a few strokes of a diamond dressing hone.

Continue reading

Corn is not a Vegetable

Reuters Science News has a new story today reporting that the genome of maize has been sequenced, which reminds me that corn is a grain. It is a starchy carbohydrate. Like rice and wheat it could be cultivated to produce an abundant harvest that would feed villages and cities. It was a miracle food. It has been developed into a fertile, abundant and cheap, food resource. This has presented a business dilemma and challenge for farmers, food processors, distillers, and business people. How much corn can people be led to purchase and consume?
It turns up as an ingredient in processed goods. Michael Pollan provides an interesting and informative explanation of modern corn, corn farming and industrial food processing in The Omnivore’s Dilemna.
In the grocery store, it is presented identifiably in ground corn flour (grits, meal, polenta), as the main ingredient in corn chips, and as a fresh, frozen or canned product. In its raw forms, it is a nutritious and tasty item. It is a starchy grain, though, not a vegetable. Corn chips are fried or baked flat breads or croutons, made of starch and fat, just like potato chips.
A meal of meat, potatoes or rice, and corn, has protein and two kinds of carbs. I was looking at the labels on the (Green Giant) frozen foods in my freezer. Corn has over 150 calories in a 3/4 cup serving. Peas have about 90 calories for that size serving. Beans have about 35 calories. Mixed vegetables with corn, peas, beans and carrots are marked at about 70 calories.
I like corn. I plan to keep using corn as a occasional treat – corn on the cob is wonderful. I think it is a staple, but I have to think of it as a starch course like bread, pasta, potatoes and rice.